ML 101Zero to Hero- openwebtext2
- https://pile.eleuther.ai
- GPT-2 Output Detector https://openai-openai-detector.hf.space
- AI Content Detector - writer.com https://writer.com/ai-content-detector
- AI DETECTOR - content at scale https://contentatscale.ai/ai-content-detector
- GPTZero https://gptzero.me
- VisualGPT https://github.com/microsoft/visual-chatgpt
- Tokenizer https://platform.openai.com/tokenizer
- SentenceTransformers Sentence-BERT
- Promptingguide.ai
- Playground https://platform.openai.com/playground
- DALL-E https://labs.openai.com
- Codex JavaScript Sandbox https://platform.openai.com/codex-javascript-sandbox
- OpenAI Cookbook https://github.com/openai/openai-cookbook
- VALL-E https://vall-e.io
- https://lablab.ai
- https://azureaidevs.github.io/hub
- https://microsoft.github.io/HAXPlaybook
- Transformers
- https://udlbook.github.io/udlbook/
- https://vicuna.lmsys.org
Machine Learning by Tom MitchellInterpretable ML book - Explainable AIhttps://machinelearningmastery.comhttps://github.com/alicezheng/feature-engineering-bookhttps://towardsdatascience.com/the-7-steps-of-machine-learning-2877d7e5548ehttps://selfdrivingcars.mit.eduhttps://hadrienj.github.io/posts/Deep-Learning-Book-Series-2.1-Scalars-Vectors-Matrices-and-Tensorshttps://becominghuman.ai/building-an-image-classifier-using-deep-learning-in-python-totally-from-a-beginners-perspective-be8dbaf22dd8http://csail.mit.eduhttps://ai.googlehttps://aischool.microsoft.comhttps://github.com/amitpuri/data-science-blogshttps://www.scrapingdog.com/blog/web-scraping-rhttps://khuyentran1401.github.iohttps://mathdatasimplified.comhttps://superstudy.guideLearnAI Boot Camp Training MaterialsAnomaly Detector APIONNX RuntimeNNI (Neural Network Intelligence)ETHICAL AI- AutoML
- https://ml.azure.com
- https://aka.ms/mythbuster-automl
- https://aka.ms/automl-metrics
Shervine Amidi's illustrated study guides for Data Science tools- Practical Deep Learning for Coders part 2: Deep Learning Foundations to Stable Diffusion
- 6.S191: Introduction to Deep Learning
- Neural Networks: Zero to Hero
- Machine Learning Engineering for Production
- 11-777: Multimodal Machine Learning
- Practical Deep Learning for Coders
- CS25: Transformers United
- NYU-DLSP21: NYU Deep Learning Spring
- NLP Course
- Dive into Deep Learning
- Reinforcement Learning Course
- CS224N: Natural Language Processing with Deep Learning
- Deep Learning Lecture Series
- Stanford CS221: Artificial Intelligence: Principles and Techniques
- CS231n: Deep Learning for Computer Vision
- https://github.com/ashishpatel26/Treasure-of-Transformers
- https://rl-at-scale.github.io
- https://machinelearning.apple.com/research/neural-3d-relightable
- https://github.com/facebookresearch/dinov2
- https://www.futuretools.io